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Inertia effects on periodic synchronization in a system of coupled oscillators
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We study analytically the synchronization phenomena in a set of globally coupled oscillators under external
periodic driving, with emphasis on the effects of small inertia. We examine in detail both the integer and
fractional mode locking present in the system with inertia, and derive the self-consistency equation for the
order parameter, which reveals variation of the magnitude of the order parameter according to the external
periodic driving. In particular, it is found that the inertia induces discontinuous transitions between the coherent
and incoherent states.@S1063-651X~99!03701-0#
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I. INTRODUCTION

In recent years, the remarkable phenomena ofcollective
synchronizationin oscillatory systems, which are prevale
in physics, chemistry, biology, and social sciences, h
been of much interest@1–7#. Such phenomena appear
various systems, for example, charge density waves, la
Josephson-junction arrays, chemical reactions, and biolog
systems such as pacemaker cells and neurons, which ma
modeled by sets of coupled nonlinear oscillators@8–12#. Due
to analytic simplicity and some physical as well as biologi
motivation, mostly systems of globally coupled oscillato
have been studied, both analytically and numerically. Amo
those there exist systems of oscillators, each of which
externally driven, often periodically in time. For exampl
many biological systems are driven by the periodic cycles
planetary motion. Further, explicit periodic driving such
laser beams, alternating currents, or microwaves may als
considered. Such a driven oscillator system is known to
play characteristic mode locking, called Shapiro steps, p
ticularly in the case of a Josephson junction. The system
coupled oscillators with external periodic driving has be
investigated, to reveal periodic synchronization@13#. In that
study, like most studies of the system without driving, t
inertia term has not been included in the equation of moti
Namely, the inertia term has been assumed to be neglig
in comparison with the damping term. The opposite limit
large inertia in the system without periodic driving has be
considered recently, and the hysteresis associated with a
continuous transition has been pointed out@14#. On the other
hand, the role of small inertia terms in the system of os
lators under external periodic driving has not been addres

The purpose of this paper is to understand how the ine
term affects the collective synchronization in the system

*Present address: Pohang Superconductivity Center, Pohang
versity of Science and Technology, Pohang 790-784, Korea.
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coupled oscillators under periodic external driving. For th
purpose, we first examine the mode locking displayed b
driven oscillator, with particular attention to the fraction
locking due to the nonvanishing inertia, and investigate a
lytically the change of collective synchronization due to t
small inertia term in the linear response to the periodic dr
ing. The results of our theoretical analysis are as follows
the absence of inertia only oscillators locked to the exter
driving contribute to the collective synchronization. In co
trast, in the system with inertia unlocked oscillators as w
as those locked to the external driving contribute to the c
lective synchronization. In particular, the inertia gives rise
hysteresis in the bifurcation diagram, and brings on disc
tinuous transitions. It is also found that both the tim
independent and time-dependent components of the orde
rameter, describing the periodic synchronization, disp
jump discontinuities at the transition.

This paper consists of five sections: Section II introduc
the driven system of coupled oscillators with small iner
terms and the characteristic mode locking displayed by
system is investigated. In Sec. III the self-consistency eq
tion for the order parameter is derived, and discontinuo
transitions between coherent and incoherent states are
vealed. The periodic synchronization displayed by the s
tem with a simple driving strength distribution is inves
gated in Sec. IV. Finally, in Sec. V, a brief summary
given. The Appendix presents detailed analysis of the m
locking.

II. DRIVEN SYSTEM OF COUPLED OSCILLATORS

The set of equations of motion forN coupled oscillators,
the i th of which is described by its phasef i ( i
51,2, . . . ,N), is given by

mf̈ i1ḟ i1
K

N(
j 51

N

sin~f i2f j !5v i1I icosVt, ~1!ni-
353 ©1999 The American Physical Society
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where m denotes the magnitude of the~rotational! inertia
relative to the damping. The third term on the left-hand s
represents the global coupling between oscillators, w
strengthK/N. The first and the second terms on the rig
hand-side describe the constant driving and the periodic d
ing on thei th oscillator, respectively. This set of equations
motion may be regarded as the mean-field version of
array of resistively and capacitively shunted junctions, wh
serves as a common model for describing, e.g., the dyna
of superconducting arrays@15#. In this case, the two terms o
the right-hand side of Eq.~1! correspond to the combine
direct and alternating current bias. The constant~dc! driving
strengthv i is distributed over the whole oscillators accor
ing to the distributiong(v), which is assumed to be smoo
and symmetric aboutv0 . We may takev0 to be zero with-
out loss of generality, and also assume thatg(v) is concave
at v50, i.e.,g9(0),0. The periodic~ac! driving strengthI i
may also vary for different oscillators, while the frequen
V of the driving is assumed to be uniform for all oscillator
Without the inertia term (m50), Eq.~1! precisely describes
the set of equations of motion studied in Ref.@13#.

Let us first consider the simple case of two coupled os
lators (N52), described by the two coupled equations

mf̈11ḟ11
K

2
sin~f12f2!5v11I 1cosVt,

mf̈21ḟ21
K

2
sin~f22f1!5v21I 2cosVt.

The above two equations can be easily decoupled by defi
the relative phasef[f12f2; the equation of motion forf
reads
he
-

h
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em
e
h
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h
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.
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ng

mf̈1ḟ1K sin f5v1I cosVt, ~2!

wherev[v12v2 and I[I 12I 2 represent the difference in
the dc driving strength and in the ac one, respectively.

In the case of identical ac driving (I 15I 2), we have
I 50, and Eq.~2! becomes time independent:

mf̈1ḟ1K sin f5v, ~3!

describing a damped pendulum under constant torque
resistively and capacitively Josephson junction driven b
direct current. With an appropriate noise term on the rig
hand side, Eq.~3! would take the form of a Langevin equa
tion. Here it is convenient to introduce the probability dist
bution of the phasef and the velocityḟ and to consider the
corresponding Fokker-Planck equation@16#. In the stationary
state, we may take the average overḟ, and reduce the
Fokker-Planck equation to the Smoluchowski equation
the probability distribution of the phase@16,17#

S ]V~f!

]f
P~f!1kBT

]P~f!

]f D S 11m
]2V~f!

]f2 D [C, ~4!

whereC is a constant andV(f) is the washboard potentia
given by

V~f!52K cosf2vf.

Since there is no noise in Eq.~3!, the system is at zero
~effective! temperature. We thus setT50 in Eq. ~4! and
obtain the stationary probability distribution
P~f!5HN uv2K sin fu21~11mK cosf!21, for uvu.K

d@f2sin21~v/K !#, for uvu<K,
~5!
d
The

ng,
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-
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rnal
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-
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whereN is the normalization constant determined by t
relation*0

2pP(f)df51 together with the periodicity condi
tion P(f12p)5P(f). In the absence of the inertia (m
50), it is given by the well-known expression 2pN
5Av22K2. Thus foruvu<K, the coupling is strong enoug
to drive the system to the fixed point given byf
5sin21(v/K), as in the case of no inertia, and we have
stationary solution, which describes the two oscillators ph
locked to each other due to the coupling:

f15v̄t1
I 1

V~11m2V2!
~sin Vt2mV cosVt !1f0 ,

f25f12sin21
v

K

with the mean frequencyv̄[(v11v2)/2 and an arbitrary
constantf0 . For uvu.K, on the other hand, the couplin
loses in the competition with the dc driving, and the syst
e
e

does not possess a fixed point:f increases continuously, an
the two oscillators are not phase locked to each other.
average rate of increase^ḟ& is proportional to the normal-
ization constantN. Accordingly,^ḟ&/V is in general irratio-
nal, and the system is not locked to the external drivi
either.

We next consider the case in which each oscillator
driven with different ac driving strength (I 1ÞI 2). In this
case (IÞ0), we have a damped pendulum under perio
torque or resistively and capacitively Josephson junct
driven by a combined direct and alternating current. A
though Eq.~2! is not analytically tractable due to the nonlin
ear potential arising from the coupling between oscillators
is known that such a system can be locked to the exte
driving, giving rise to steplike responses. In the absence
the inertia term (m50), the locking of the system is charac
terized by^ḟ&/V5n with n integer, which is known as the
~integer! Shapiro steps, particularly in the current-voltage
lation of a single overdamped Josephson junction@18#. Even
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richer is the characteristic of the system with inertia, wh
allows fractional mode locking, characterized by the fra
tional Shapiro steps:

^ḟ&
V

5
p

q
~6!

with relatively prime integersp andq.
To investigate such mode locking in detail, we introdu

an ansatz and write the phase of the oscillator in the gen
form

f5f01^ḟ&t1A1sin~Vt1a1!

1 (
s51

q21
q

s
As,qsinS s

q
Vt1as,qD . ~7!

We first consider integer locking, where the subharmonic
Eq. ~7! can be dropped. It is tedious but straightforward
obtain the solution locked on thenth step:

f'f01nVt1A1sin~Vt1a1! ~8!

with A1[I /VA11m2V2 and a1[2tan21(mV), where
higher harmonics have been disregarded~see the Appendix!.
Note that Eq.~8! does not depend on the coupling strengthK
explicitly. The condition for integer locking is thus fulfilled
by the dc driving lying in the range

nV2KuJn~A1!u<v<nV1KuJn~A1!u, ~9!

and the phasef0 in Eq. ~8! is given by

f05~21!nsin21F v2nV

KJn~A1!G1na1 , ~10!

whereJn(x) is thenth Bessel function, Accordingly, in the
high-frequency limit (I /V!1), the width of thenth step is
given by

dv52KuJn~A1!u'
K

2n21n!
S I

VA11m2V2D n

, ~11!

which shows that the inertia term tends to shrink the inte
locking region, suggestive of the appearance of the a
tional ~fractional! mode locking.

For general~fractional! locking, ^ḟ&5(p/q)V, Eq. ~7!
leads to

f5f01
p

q
Vt1A1sin~Vt1a1!

1 (
s51

q21
q

s
As,qsinS s

q
Vt1as,qD , ~12!

which yields the locking condition
-

ral

in

r
i-

v5
p

q
V1K )

s51

q21

(
l s

Jl s
~qAs,q /s!

3(
l

Jl ~A1!sinS f01l a11 (
s51

q21

l sas,qD ~13!

with the summation performed under the constraintp/q1l

1(s51
q21sl s /q50. In particular, whenp51, among the inte-

ger sets (q,l ,(s51
q21sl s) satisfying the constraint, the smal

est ones give dominant contributions, e.g., (2,21,1) and
(3,21,2) for theV/2 step and theV/3 step, respectively
Noting that the strengthA1 of the primary component is o
the linear order inI, we examine the fractional mode lockin

^ḟ&/V5p/q with p51 as a linear response to the extern
driving. Higher fractional steps (pÞ1), on the other hand
can be shown to have the widths of higher orders inI. The
two simple cases,q52 (^ḟ&5V/2) and q53 (^ḟ&
5V/3), are investigated in the Appendix, yielding the st
widths to the leading order,

dv5H V21K2mIF 1/2~mV!, for q52

~9/8V2!K3mIF 1/3~mV!, for q53,
~14!

where the precise forms of the functionsF1/2(x) andF1/3(x)
are presented in the Appendix. Equation~14! displays that
the widthdv shrinks asm is decreased, and eventually va
ishes in the limitm→0. This manifests that finite inertia i
indeed necessary for fractional locking. In the absence of
inertia term, the system exhibits only integer locking, whi
has been confirmed in many numerical studies.

We now return to the set ofN oscillators described by Eq
~1!. Collective behavior of such anN-oscillator system is
conveniently described by the complexorder parameter

C[
1

N(
j 51

N

eif j5Deiu, ~15!

where nonvanishingC indicates the appearance of synchr
nization. The order parameter defined in Eq.~15! allows us
to reduce Eq.~1! to a singledecoupled equation

mf̈ i1ḟ i1KD sin~f i2u!5v i1I icosVt,

where D and u are to be determined by imposing se
consistency. We then seek the stationary solution with c
stantu, which is possible due to the symmetry of the dist
bution of v i and I i about zero. Redefiningf i2u asf i and
suppressing indices, we obtain

mf̈1ḟ1KD sin f5v1I cosVt, ~16!

which is essentially the same as Eq.~2! except for the fact
that D in general depends periodically on time. Note he
that the order parameterD, which is defined in terms of the
phase via Eq.~15!, in turn determines the behavior of th
phase via Eq.~16!. The self-consistency with the behavior o
the phase in Eq.~7! thus requires the expansion
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D5D01(
s

Dscos~sVt1bs!1(
p,q

Dp,qcosS p

q
Vt1bp,qD .

~17!

Accordingly, the order parameter is composed of the tim
independent dc componentD0 , which exists regardless o
the ac driving, and ac components due to the externa
driving.

The behavior of the phase governed by Eq.~16! can be
examined in a manner similar to that presented in the
pendix. Namely, inserting Eqs.~7! and~17! into Eq.~16! and
comparing the components term by term, we can obtain
amplitudes in Eq.~7! in terms of the components of the ord
parameter.~The order parameter itself can be obtained
imposing self-consistency and will be discussed in the n
section.! Among them the width of the step on which osc
lators are locked to the external ac driving is determined
the equation for the dc component. For example, in the c
of integer locking, the resulting equation for the dc comp
nent reads

v5nV1~21!nKD0Jn~A1!sin~f02na1!, ~18!

which is simply Eq.~A5! with K replaced byKD0 . Conse-
quently, those oscillators with dc driving in the range

nV2KD0uJn~A1!u<v<nV1KD0uJn~A1!u, ~19!

which will be denoted by the notationvPSn , are locked to
the external driving, and Eqs.~10! and ~11! are still appli-
cable simply withK replaced byKD0 . Likewise, for frac-
tional locking, the locking condition and the step width a
given by Eqs.~13! and~14! with the appropriate replacemen
of K by KD0 .

III. SELF-CONSISTENCY EQUATION
FOR THE ORDER PARAMETER

In this section we derive the self-consistency equation
the order parameter, which determines the collective beh
ior of the system. We suppose that the periodic driv
strengthI is distributed according tof (I ), independently of
the constant driving strengthv. Recalling thatf in Eq. ~16!
in fact representsf2u, we have the self-consistency equ
tion

D5
1

N(
j

eif j5E
2`

`

dI f ~ I !E
2`

`

dv g~v!^eif&v,I ,

~20!

where ^•••&v,I denotes the average in the stationary st
with given v and I.

To investigate how the inertia term affects the collect
synchronization, we first consider the system without pe
odic driving (I 50), for which Eq.~16! reads

mf̈1ḟ1KD sin f5v. ~21!

In this case there does not exist mode locking, and the
tionary state of the system is characterized by the order
rameter, which is time independent. Namely, the order
rameter D possesses only the dc componentD0 in the
-

ac

-

e

y
xt

y
se
-

r
v-
g

e

i-

a-
a-
-

expansion given by Eq.~17!, making Eq.~21! essentially the
same as Eq.~3!. Accordingly, the discussion below Eq.~3!
is applicable, and Eq.~21! leads to the stationary probabilit
distribution given by Eq.~5! with K replaced byKD.
With the average taken with respect to the correspond
probability distribution, the order parameter in Eq.~20!
becomes

D5E
uvu.KD

dv g~v!^eif&v1E
uvu<KD

dv g~v!^eif&v

5S p

2
g~0!2

m

2 DKD1
4

3
mg~0!~KD!21

p

16
g9~0!~KD!3

1O~KD!4. ~22!

Note that, unlike the case of no inertia (m50), the oscilla-
tors with uvu.KD as well as those withuvu<KD contribute
to the order parameter. Namely, in the system with iner
unlocked oscillators as well as those locked to the exte
driving contribute to the collective synchronization. It is al
of interest that the quadratic term@of order (KD)2], which
results from the unlocked oscillators, induces hysteresis
the bifurcation diagram, since (4/3)mg(0).0 @13#. Indeed
the appearance of the hysteresis has been pointed out i
system with large inertia@14#.

We now consider the effects of periodic driving, whic
leads to locking of the oscillators in the appropriate ran
Both integer locking and fractional locking have been stu
ied in detail in Sec. II. In particular, the ranges of the co
stant driving for locking and the phases of such locked
cillators allow us to compute the contributions of locke
oscillators to the order parameter. The contribution of
locked oscillators to the order parameter is computed as
lows:

E
2`

`

dI f ~ I !E
2`

`

dv g~v!^eif&v,I

5E
2`

`

dI f ~ I !(
p,q

E
vPSp/q

dv g~v! ^eif&, ~23!

where, for example, the integer locking rangeSp/q51 is given
by Eq.~19! and the fractional locking rangesS1/2 andS1/3 by
Eqs.~A10! and~A16! with K replaced byKD0 , respectively.
The phases of the oscillators in such locking ranges are g
by Eqs.~8!, ~A6!, and~A13!, with the coefficientsAs,q pre-
sented in Eqs.~A8! and ~A14!.

It is easy to compute the contribution from thenth integer
step:

E dI f ~ I !E
vPSn

dv g~v!^eif&

5a~n!KD01b~n!~KD0!22c~n!~KD0!31O~KD0!4

~24!

with the coefficients



PRE 59 357INERTIA EFFECTS ON PERIODIC SYNCHRONIZATION . . .
a~n![
p

2
g~0!^J0~A1!cos@A1sin~Vt1a1!#& I1p (

n51

`

g~2nV!cos~2nVt12na1!^J2n~A1!cos@A1sin~Vt1a1!#& I

2p (
n51

`

g@~2n21!V#sin@~2n21!~Vt1a1!#^J2n21~A1!sin@A1sin~Vt1a1!#& I ,

b~n![2
4

3 (
n51

`

~21!ng8~nV!sin~nVt1na1!^Jn
2~A1!cos@A1sin~Vt1a1!#& I , ~25!

c~n![2
p

16
g9~0!^J0

3~A1!cos@A1sin~Vt1a1!#& I2
p

8 (
n51

`

g9~2nV!cos~2nVt12na1!^J2n
3 ~A1!cos@A1sin~Vt1a1!#& I

1
p

8 (
n51

`

g9@~2n21!V#sin@~2n21!~Vt1a1!#^J2n21
3 ~A1!sin@A1sin~Vt1a1!#& I ,
th

p
th

o
r

g
s
r

be

el

e

:

s
ive

at
n

-
a-
s

where^•••& I denotes the average over the distribution of
ac driving strength, i.e.,̂O& I[*2`

` dI f (I )O. In order to ob-
tain the complete self-consistency equation for the order
rameter, we should also consider the contributions from
fractional steps. The fractional locking on thep/q step in
general leads to the contribution of the order of (KD0)q,
with frequency (p/q)V and amplitudes proportional t
g(pV/q). To the order of (KD0)3, we thus need to conside
only the casesq52 and 3. To the linear order inI, it is
straightforward to observe that the symmetry off (I ) about
zero leads to a null contribution from the fractional lockin
on the 1/2 and 1/3 steps. Contributions to the higher order
I, where the step 2/3 should also be considered, can, in p
ciple, be computed analytically via the procedure descri
in the Appendix.

With the contributions from the locked oscillators as w
as from the unlocked ones@in Eq. ~22!# taken into account,
the self-consistency equation for the order parameter in g
eral takes the form

D5aKD01b~KD0!22c~KD0!31O~KD0!4, ~26!

where the time-dependent coefficients can be expanded

a5a01(
s

ascos~sVt1gs!1(
p,q

ap,qcosS p

q
Vt1gp,qD ,

b5b01(
s

bscos~sVt1ds!1(
p,q

bp,qcosS p

q
Vt1dp,qD ,

~27!

c5c01(
s

cscos~sVt1es!1(
p,q

cp,qcosS p

q
Vt1ep,qD ,

with the dc and ac amplitudes and phases depending on
details of the external driving.

Equation~26! describes the collective behavior of the sy
tem for given values of the parameters. The expansion g
by Eq. ~17! allows us to reduce Eq.~26! into the equations
for the components of the order parameter@to the order of
(KD0)3]:
e

a-
e

in
in-
d

l

n-

the

-
n

D05a0KD01b0~KD0!22c0~KD0!3 ,

Ds5asKD01bs~KD0!2cos~gs2ds!

2Fcscos~gs2es!2
bs

2

2as
sin2~gs2ds!G~KD0!3 ,

~28!

Dp,q5ap,qKD01bp,q~KD0!2cos~gp,q2dp,q!

2Fcp,qcos~gp,q2ep,q!2
bp,q

2

2ap,q
sin2~gp,q2dp,q!G

3~KD0!3 ,

with the phase

bs5tan21F assin gs1bsKD0sin ds2cs~KD0!2sin es

ascosgs1bsKD0cosds2cs~KD0!2coses
G

andbp,q similarly given.
We first consider the dc componentD0 in Eq. ~28!, the

general behavior of which has been analyzed in Ref.@13#: In
addition to the trivial solutionD50, it allows the nontrivial
solutions described by

D05D6[
b0K6A~b0

214c0a0!K224c0K

2c0K2
, ~29!

if K>K0[4c0 /(b0
214c0a0). For simplicity, we assume

that all coefficientsa0 , b0 , and c0 have positive values
(a0 ,b0 ,c0.0). For K,K0 , only the null solution exists,
whereas the stable nontrivial solutionD1 together with the
unstable solutionD2 appears via a tangent bifurcation
K5K0 . As K is increased further, a transcritical bifurcatio
arises atK5Kc[a0

21 , via which the null solution loses its
stability. Thus only the nontrivial solutionD1 is stable for
K.Kc . For K0,K,Kc , on the other hand, both the solu
tion D1 and the null solution are possible, indicating bist
bility. This implies the following behavior of the system: A
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K is increased from zero, the system, starting in the incoh
ent state, exhibits a first-order transition atK5Kc into the
coherent state described by the nontrivial solution, with
jump D0

(c)[b0 /c0Kc in the dc componentD0 . Conversely,
whenK is decreased from aboveKc , the system is still in the
coherent state untilK reachesK0 , at which the transition
from the coherent state into the incoherent one occurs, w
the jumpD0

(0)[b0/2c0K0 . ~See Ref.@13# for details.! In this
manner the system with nonvanishing inertia exhibits hys
esis as the coupling strength is varied.

IV. PERIODIC SYNCHRONIZATION

In the system without periodic driving (I 50), the station-
ary state of the system is characterized by the tim
independent order parameter. In the periodically driven s
tem, on the other hand, the coefficientsa, b, andc in Eq.
~27! depend on time, and the system is expected to disp
periodic synchronization, characterized by periodic variat
of the order parameter. In this section we study such perio
synchronization phenomena, with particular attention to
inertia effects. Since the analytical computation of the c
tributions from the fractional steps, which appear in high
orders in I, requires quite lengthy and complicated proc
dures, we mostly assume that the contributions from the
teger steps are dominant over those from the fractional st
this is the case for high-frequency driving or for small iner
and weak ac driving, and the system still displays charac
istic effects of inertia on periodic synchronization. The e
plicit forms of the coefficients in Eq.~27! are determined for
given distributionsg(v) and f (I ). We here suppose that th
dc driving strengths are distributed in the interv
@2vc , vc#, i.e., g(v)Þ0 only for uvu,vc , and take the
simple 6I -type distribution,f (I )5 1

2 @d(I 2I 0)1d(I 1I 0)#.
Characteristic features such as periodic synchronization
not change qualitatively even if a broad distribution such
a Gaussian is used.

We first consider the simple case of high-frequency dr
ing such thatV is larger than 3vc , where only thep/q50
step contributes to the order parameter. The coefficient
Eq. ~27! in the self-consistency equation are then obtain
from Eqs.~22! and ~25!:

a5
p

2
g~0!J0~A0!cos@A0sin~Vt1a1!#2

m

2
,

b5
4

3
mg~0!,

c52
p

16
g9~0!J0

3~A0!cos@A0sin~Vt1a1!#,

which give the amplitudes
r-

e

th

r-

-
s-

y
n
ic
e
-
r
-
-
s;

r-
-

l

do
s

-

in
d

a2n5
p

2
g~0!J0~A0! J2n~A0!2

m

2
dn,0 ,

b2n5
4

3
mg~0!dn,0 ,

~30!

c2n52
p

16
g9~0!J0

3~A0! J2n~A0!,

a2n215b2n215c2n2150

with A0[I 0 /VA11m2V2 and the phasesg2n5e2n
52na1 . Note that due to the symmetry off (I ), the above
amplitudes and, accordingly, the order parameter beco
even functions ofI 0 .

Equation~26! together with Eq.~30! describes the collec
tive behavior of the system for given values of the para
eters. In the absence of the inertia and ac driv
(m5I 050), we haveD5D0 in Eq. ~26! with coefficients
a5a05(p/2)g(0), b50, and c5c052(p/16)g9(0),
which reduces Eq.~26! into the self-consistency equatio
obtained in Ref.@8#. As pointed out already, without ac driv
ing, the nonvanishing inertia here keeps the value ofb posi-
tive, inducing hysteresis in the bifurcation diagram of t
stationary order parameterD5D0 @19#. Together with appro-
priate ac driving, the inertia may bring on hysteresis also
the behavior of the ac components of the order parame
The periodic behavior of the order parameter is described
its ac componentsDs , which are related with the dc compo
nentD0 via Eq.~28!. With the amplitudes given by Eq.~30!,
it gives the total order parameterD, displaying the periodic-
ity p/V half the external one. Accordingly, the behavior
the dc componentD0 discussed in Sec. III determines that
the ac component as well. AsK is increased from zero, the
system thus exhibits a first-order transition atK5Kc from
the incoherent state to the coherent one, where both dc
ac components of the order parameter acquire nonzero
ues. In particular, the ac componentD2n (n>1) as well as
the dc component display jump discontinuities atK5Kc ,
given by D2n

(c)5a2n(b0 /c0)2c2n(b0 /c0)3. Similarly, when
K is decreased from aboveKc , the first-order transition oc-
curs at K5K0 , with the jump in the ac componen
D2n

(0)5a2n(b0/2c0)2c2n(b0/2c0)3. Thus for sufficiently
large K the system is in the coherent state, exhibiting pe
odic synchronization.

Figure 1 shows the behavior of the total order parame
D at given timet, given by Eqs.~26! and ~30!, as the cou-
pling strengthK is varied. Both~a! the case of zero inertia
(m50) and~b! that of nonvanishing one (m50.05) are dis-
played, at timet55. The driving strength and frequenc
have been chosen to beI 052 andV55 while the dc driving
strengths to follow a semicircle distribution with unit radiu
In the absence of inertia (m50), as shown in~a!, coherent
behavior emerges via a continuous transition atK5Kc
'1.0842. On the other hand,~b! displays the first-order tran
sitions in the system with nonvanishing inertia (m50.05),
appearing atK0'1.1038 and atKc'1.1089, and associate
hysteresis. Note thatKc is increased from the value withou
inertia, indicating that the inertia tends to suppress coh
ence. The corresponding time evolution of the order para
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eter for K51.11 is shown in Fig. 2, where the periodici
p/V5p/5 can be observed. Comparison of~a! and ~b! in-
deed reveals that the inertia tends to reduce the value o
order parameter, thus suppressing coherence in the sys

We next consider the case of small inertia (m!1) and
weak ac driving (I 0!1). In this case the fractional step
give contributions of the order ofmI 0

2 , and may be neglecte
in the self-consistency equation to the order ofI 0

2 , leading to
Eq. ~27! in the form

a5a01a2cos~2Vt12a1!1O~mI 0
2!,

b5b01b1sin~Vt1a1!1O~mI 0
2!,

c5c01c2cos~2Vt12a1!1O~mI 0
2!,

with the amplitudes

a0[
p

2
g~0!2

m

2
2

pI 0
2

4V2
g~0!2

pI 0
2

4V2
g~V!,

FIG. 1. Behavior of the order parameter with the coupli
strength,~a! in the absence of inertia (m50) and~b! in the presence
of inertia (mÞ0). In ~a! a pitchfork bifurcation is shown to occur a
K5Kc , while ~b! displays a tangent bifurcation atK0 and a trans-
critical bifurcation atKc . The dotted lines indicate discontinuou
jumps between the coherent and incoherent states.

FIG. 2. Periodic synchronization in the system withK51.11,
I 52.0, andV55.0, for ~a! m50 and~b! m50.05. Comparison of
the two reveals that the inertia tends to suppress synchronizat
he
m.

a2[
pI 0

2

8V2
g~0!1

pI 0
2

8V2
g~2V!1

pI 0
2

4V2
g~V!,

b0[
4

3
mg~0!,

b1[
I 0

2

3V2
g8~V!,

c0[2
p

16
g9~0!1

pI 0
2

16V2
g9~0!,

c2[2
pI 0

2

64V2
g9~0!.

The total order parameterD thus reads, to the order ofI 0
2 ,

D5D01b1~KD0!2sin~Vt2tan21mV!

1@a2~KD0!2c2~KD0!3#cos~2Vt22 tan21mV!,

~31!

displaying the fundamental periodicity 2p/V together with
its harmonicsp/V. Similarly to the previous case of high
frequency driving, the total order parameterD also exhibits a
first-order transition between the incoherent state and the
herent one; at the transition both dc and ac component
the order parameter display jump discontinuities.

As the coupling strengthK is varied, the order paramete
D given by Eq.~31! displays behaviors qualitatively simila
to those for high-frequency driving, shown in Fig. 1. As a
example, we choose a Gaussian distribution with unit va
ance for the dc driving andI 050.1 andV51 for the ac
driving. In the system withm50 this leads to a continuou
transition atKc'1.6087; form50.05 first-order transitions
at K0'1.6698 and atKc'1.6762. Figure 3 shows the corre
sponding time evolution forK51.68, which displays the
fundamental periodicity 2p/V52p as well as the harmon
ics p/V. Again the suppressing effects of the inertia on sy
chronization is manifested..

FIG. 3. Periodic synchronization in the system withK51.68,
I 50.1, andV51.0, for ~a! m50 and~b! m50.05. It is again ob-
served that the inertia tends to suppress the synchronization.
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It is also of interest to note the possibility that the amp
tudes of the ac components can be of the same order as
of the dc component for appropriate ranges of the par
eters. For example, in Eq.~30! the ratio a2 /a0

5J2(A0)/$J0(A0)2@pg(0)J0(A0)#21m% may become of
the order unity forI 0*1. Then the order parameterD may
sometimes vanish during its periodic time evolution, displa
ing synchronization-desynchronization cycles in time. Su
cycles have been observed in the numerical simulation
the system without inertia@20#.

V. SUMMARY

We have studied analytically the synchronization ph
nomena in a set of globally coupled oscillators under ex
nal periodic driving. To understand how the inertia term
fects the collective synchronization, we have investigated
change of collective synchronization due to the small ine
term in the linear response to the periodic driving. In t
absence of inertia, only oscillators locked to the exter
driving contribute to the collective synchronization. In co
trast, in the system with inertia, unlocked oscillators as w
as those locked to the external driving contribute to the c
lective synchronization. The resulting self-consistency eq
tion for the order parameter reveals variation of the mag
tude of the order parameter according to the external peri
driving. The dependence of the characteristic behavior of
order parameter on the inertia as well as on the exte
driving has been examined: The inertia tends to supp
coherence and affects the details of the behavior, such a
nature of transitions and the period of the system. In part
lar, it has been found that the inertia gives rise to hyster
in the bifurcation diagram and induces discontinuous tra
tions between the coherent and incoherent states. Here
analytical results have been presented, and it would be
interest to confirm these results via large-scale numer
simulations.
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APPENDIX

1. Integer locking: Šḟ‹5nV

Inserting the ansatz

f~ t !5f01nVt1(
s

Assin~sVt1as! ~A1!

into Eq. ~2!, we obtain
hat
-

-
h
of

-
r-
-
e
a

l

ll
l-
a-
i-
ic
e
al
ss
the
-
is
i-
nly
of
al

d

a
o-
or

m(
s

s2V2Assin~sVt1as!

2(
s

sVAscos~sVt1as!1I cosVt

5nV2v1K)
s

(
l s

Jl s
~As!sin F l s

~ t !,

where Jl(x) is the l th Bessel function andF l s
(t)[f0

1(sl sas1(n1(ssl s)Vt. The integers l s satisfying
(ssl s52n contribute to the dc component inF l s

:

v2nV5K)
s

( 8
l s

Jl s
~As!sinS f01(

s
l sasD , ~A2!

where the prime in the summation represents the constr
(ssl s52n. This gives an estimation of the dc drivin
strengthv corresponding to the integer locking. Further, t
amplitudeAs and phaseas of the component with frequenc
sV can be determined from the equation

ms2V2Assin~sVt1as!2sVAscos~sVt1as!1ds,1I cossVt

5K)
s51

N

(
l s

1
Jl

s
1~As!sinS f01sVt1(

s51

N

l s
1asD

1K)
s51

N

(
l s

2
Jl

s
2~As!sinS f02sVt1(

s51

N

l s
2asD , ~A3!

with integers l s
1 and l s

2 satisfying (ssl s
15s2n and

(ssl s
252s2n, respectively. In Eq.~A3! the ac driving

with frequencyV gives the contribution, independent ofK,
to the amplitudeA1 . On the other hand, the leading ord
contribution toAs with s.1 is obviously given byK. When
K is sufficiently small compared with the driving frequenc
and amplitude, Eq.~A3! with s51 takes the approximate
form

mV2A1sin~Vt1a1!2A1V cos~Vt1a1!1I cosVt

'KJ12n~A1!sin@f01Vt2~n21!a1#

2KJ11n~A1!sin@f02Vt2~n11!a1#,

which yieldsA1 anda1 to the zeroth order inK:

A15
I

VA11m2V2
,

a152tan21~mV!.

This gives the~locked! phase of the oscillator on thenth
step:
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f'f01nVt1
I

VA11m2V2
sin@Vt2tan21~mV!#,

~A4!

which is just Eq.~8!. Neglecting the higher-order contribu
tions fromAs with s.1 in Eq. ~A2!, we further have

v5nV1~21!nKJn~A1!sin~f02na1!, ~A5!

which leads to the range of the dc driving strength given
Eq. ~9! and the constantf0 in Eq. ~10!.

2. Fractional locking

^ḟ&5V/2. The simple trial solution

f~ t !5f01
V

2
t1A1sin~Vt1a1!12A1,2sinS V

2
t1a1,2D

~A6!

leads the equation of motion in Eq.~16! to take the form

mV2A1sin~Vt1a1!2A1V cos~Vt1a1!1I cosVt

1
mV2

2
A1,2sinS V

2
t1a1,2D2A1,2V cosS V

2
t1a1,2D

5K(
n,l

Jn~2A1,2!Jl ~A1!sin Fn,l ~ t !1
V

2
2v,

whereFn,l (t)[f01na1,21l a11(1/21n/21l )Vt. Thus
the terms withl 11/252n/2 contribute to the dc compo
nent, and give the equation for the dc component

V

2
2v2KJ1~2A1,2!J0~A1!sin~f02a1,2!

2KJ1~2A1,2!J1~A1!sin~f01a1,22a1!1O~K3,I 2!

50. ~A7!

On the other hand, the amplitude and phase of the com
nent with frequencyV/2 is determined by the equation

2
mV2

2
A1,2sinS V

2
t1a1,2D1A1,2V cosS V

2
t1a1,2D

1KJ0~2A1,2!J0~A1!sinS V

2
t1f0D

1KJ0~2A1,2!J1~A1!sinS V

2
t1a12f0D1O~K2,I 2!

50,

which, upon expanding the Bessel functionJn(z) for z!1,
yields

A1,2V cosa1,25
K

A11m2V2/4
FmV

2
cosf02sin f0

1
I

4V
P~mV;f0!G ,
y

o-

A1,2V sin a1,25
K

A11m2V2/4
FmV

2
sin f01cosf0

2
I

4V
Q~mV;f0!G ~A8!

with P(x;f0)[(11x2)21@3x cosf01(22x2)sinf0# and
Q(x;f0)[(11x2)21@3x sinf01(x222)cosf0#. Equation
~A7! combined with Eq.~A8! leads to the following expres
sion:

v5v1/22
mI

2V
K2F1/2~mV!sin~2f02a1!, ~A9!

where

v1/2[
V

2
1

K2

V~11m2V2/4!
,

F1/2~x![~11x2!21/2S 11
x2

4 D 21

,

and we have usedA15I /VA11m2V2. Equation~A9! yields
the range of the dc driving strength corresponding to theV/2
locking:

v1/22
mI

2V
K2F1/2~mV!<v<v1/21

mI

2V
K2F1/2~mV!,

~A10!

and the constant phasef0 in Eq. ~A9! is given by

f05
1

2
sin21y2

a1

2
~A11!

with

y[2
2V

mIK 2F1/2~mV!
~v2v1/2!.

Equation~A10! leads to the step width for̂ḟ&5V/2:

dv5V21K2mIF 1/2~mV!, ~A12!

which is presented in Eq.~14!.

^ḟ&5V/3. In a similar manner, we take the trial solutio
displaying^ḟ&5V/3,

f~ t !5f01
V

3
t1A1sin~Vt1a1!13A1,3sinS V

3
t1a1,3D

1
3

2
A2,3sinS 2V

3
t1a2,3D , ~A13!

and obtain the coefficients
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A1,3V cosa1,35S 11
m2V2

9 D 21FKS mV

3
cosf02sin f0D1K2S 2mV

3
B~mV!2C~mV! D G ,

A1,3V sin a1,35S 11
m2V2

9 D 21FKS mV

3
sin f01cosf0D1K2S mV

3
C~mV!1B~mV! D G ,

A2,3V cosa2,35
K

2V
I ~11m2V2!21S 11

4m2V2

9 D 21F5mV

3
cosf02S 2m2V2

3
21D sinf0G

1K2S 11
4m2V2

9 D 21S 2mV

3
L~mV!2M ~mV! D ,

A2,3V sin a2,35
K

2V
I ~11m2V2!21S 11

4m2V2

9 D 21F2
5mV

3
sin f01S 12

2m2V2

3 D cosf0G
1K2S 11

4m2V2

9 D 21S 2mV

3
M ~mV!1L~mV! D , ~A14!
where

B~x!

D~x!
[S x

3
2

11

27
x3D cos 2f02S 11

19

9
x21

10

27
x4D sin 2f0 ,

C~x!

D~x!
[S 2

x

3
1

11

27
x3D sin 2f02S 11

19

9
x2

1
10

27
x4D cos 2f0 ,

with

D~x![
3I

8V2
~11x2!21S 11

x2

9 D 21S 11
4x2

9 D 21

and

L~x![
3

2VS 11
x2

9 D 21S x

3
cos 2f02sin 2f0D ,

M ~x![
3

2VS 11
x2

9 D 21S x

3
sin 2f01cos 2f0D .

The dc driving strength corresponding to theV/3 locking is
also obtained:

v5v1/32
9K3

16V2
mIF 1/3~mV!sin~3f01h! ~A15!

with
ce
,

v1/3[
V

3
1

3K2

2V~11m2V2/9!
,

F1/3~x![~11x2!21S 11
x2

9 D 22S 11
4x2

9 D 21

3S 11
31x2

9
1

85x4

27
1

61x6

81
1

4x8

81 D 1/2

,

h~x![tan21F S x1
5x3

3
1

2x5

9 D S x2

3
2

x4

9 D 21G .
This gives the locking condition for̂ḟ&5V/3:

v1/32
9K3

16V2
mIF 1/3~mV!<v<v1/31

9K3

16V2
mIF 1/3~mV!.

~A16!

Likewise the constant phasef0 in Eq. ~A14! is given by

f05
1

3
sin21F 16V2

9mIK 3F1/3~mV!
~v2v1/3!G2

h

3
.

~A17!

We thus obtain the width of the step^ḟ&5V/3

dv5
9

8V2
K3mIF 1/3~mV!, ~A18!

which is given in Eq.~14!.
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