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Inertia effects on periodic synchronization in a system of coupled oscillators

H. Hong
Department of Physics Education and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

M. Y. Choi and J. Yt
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

K.-S. Soh
Department of Physics Education and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea
(Received 9 April 1998; revised manuscript received 27 August 11998

We study analytically the synchronization phenomena in a set of globally coupled oscillators under external
periodic driving, with emphasis on the effects of small inertia. We examine in detail both the integer and
fractional mode locking present in the system with inertia, and derive the self-consistency equation for the
order parameter, which reveals variation of the magnitude of the order parameter according to the external
periodic driving. In particular, it is found that the inertia induces discontinuous transitions between the coherent
and incoherent statepS1063-651X99)03701-Q

PACS numbgs): 05.45.Xt, 02.50-r, 05.70.Fh, 87.16-e

[. INTRODUCTION coupled oscillators under periodic external driving. For this
purpose, we first examine the mode locking displayed by a
In recent years, the remarkable phenomenaadfective  driven oscillator, with particular attention to the fractional
synchronizatiorin oscillatory systems, which are prevalent locking due to the nonvanishing inertia, and investigate ana-
in physics, chemistry, biology, and social sciences, havéytically the change of collective synchronization due to the
been of much interesfl-7]. Such phenomena appear in Small inertia term in the linear response to the periodic driv-
various systems, for example, charge density waves, lasdfld- The results of our theoretical analysis are as follows: In
Josephson-junction arrays, chemical reactions, and biologic&l¢ absence of inertia only oscillators locked to the external
systems such as pacemaker cells and neurons, which may Bving contribute to the collective synchronization. In con-
modeled by sets of coupled nonlinear oscillai@s12). Due ~ trast, in the system with inertia unlocked oscillators as well
to analytic simplicity and some physical as well as biological@S those locked to the external driving contribute to the col-
motivation, mostly systems of globally coupled oscillatorsective synchronization. In particular, the inertia gives rise to
have been studied, both analytically and numerically. AmondySteresis in the bifurcation diagram, and brings on discon-
those there exist systems of oscillators, each of which i$inuous transitions. It is also found that both the time-
externally driven, often periodically in time. For example, independent and time-dependent components of the order pa-
many biological systems are driven by the periodic cycles ofameter, describing the periodic synchronization, display
planetary motion. Further, explicit periodic driving such aslump discontinuities at the transition. o
laser beams, alternating currents, or microwaves may also be ThiS paper consists of five sections: Section Il introduces
considered. Such a driven oscillator system is known to disthe driven system of coupled oscillators with small inertia
play characteristic mode locking, called Shapiro steps, pat'ms and the characteristic mode locking displayed by the
ticularly in the case of a Josephson junction. The system ofyStem is investigated. In Sec. Il the self-consistency equa-
coupled oscillators with external periodic driving has beenfion for the order parameter is derived, and discontinuous
investigated, to reveal periodic synchronizat[dg]. In that ~ transitions between coherent and incoherent states are re-
study, like most studies of the system without driving, theVealed. The periodic synchronization displayed by the sys-
inertia term has not been included in the equation of motiontM Wwith & simple driving strength distribution is investi-
Namely, the inertia term has been assumed to be negligibi@ated in Sec. IV. Finally, in Sec. V, a brief summary is
in comparison with the damping term. The opposite limit of given. The Appendix presents detailed analysis of the mode
large inertia in the system without periodic driving has beerfocking.
considered recently, and the hysteresis associated with a dis-
continuous transition has been pointed [did]. On the other
hand, the role of small inertia terms in the system of oscil-
lators under external periodic driving has not been addressed. The set of equations of motion fdd coupled oscillators,
The purpose of this paper is to understand how the inertithe ith of which is described by its phasep; (i
term affects the collective synchronization in the system of=1,2, ... N), is given by

II. DRIVEN SYSTEM OF COUPLED OSCILLATORS

N
. . . K
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where u denotes the magnitude of tHeotationa) inertia wo+ p+K sin p=w+1 cosQt )
relative to the damping. The third term on the left-hand side ’
represents the global coupling between oscillators, Witq/vherewzwl—wz andl=1,—1, represent the difference in

strengthK/N. The first and the second terms on the right'the dc driving strength and in the ac one, respectively.
hand-side describe the constant driving and the periodic driv- In the case of identical ac drivingl 1(,:|2) we have

ing on theith oscillator, respectively. This set of equ_ations ofI —0, and Eq.(2) becomes time independent:
motion may be regarded as the mean-field version of the
array of resistively and capacitively shunted junctions, which . )
serves as a common model for describing, e.g., the dynamics rot+dtKsind=o, ©)

of superconducting array45]. In this case, the two terms on .

the right-hand side of Eq(1) correspond to the combined describing a damped pendulum under constant torque or a
direct and alternating current bias. The constaig} driving ~ resistively and capacitively Josephson junction driven by a
strengthew; is distributed over the whole oscillators accord- direct current. With an appropriate noise term on the right-
ing to the distributiorg(w), which is assumed to be smooth hand side, Eq(3) would take the form of a Langevin equa-
and symmetric aboub,. We may takew, to be zero with- tion. Here it is convenient to mtroduge the probability distri-
out loss of generality, and also assume tab) is concave bution of the phase and the velocityp and to consider the
atw=0, i.e.,g"(0)<0. The periodigag driving strengthl; corresponding Fokker-Planck equatid®]. In the stationary
may also vary for different oscillators, while the frequency state, we may take the average ouﬁr and reduce the

Q of the driving is assumed to be uniform for all oscillators. Fokker-Planck equation to the Smoluchowski equation for
Without the inertia term £=0), Eq.(1) precisely describes the probability distribution of the pha$é&6,17

the set of equations of motion studied in Rf3].

Let us first consider the simple case of two coupled oscil- N(p) IP( ) V() B
lators (N=2), described by the two coupled equations P(¢)+kgT +u =C, 4
I I 92

. K .

phrt d1F 5SiN(d1— o) = w1 +1,C0S O, whereC is a constant an¥(¢) is the washboard potential

given by

.. K.

Mot Pt Esm(¢2_ $1) = wyt 1 ,c0s Ot. V(¢)=—K cos¢p— wda.

The above two equations can be easily decoupled by definin§ince there is no noise in Eq3), the system is at zero
the relative phasé= ¢,— ¢,; the equation of motion fog (effective temperature. We thus s&t=0 in Eq. (4) and
reads obtain the stationary probability distribution

N]o—K sin¢| Y1+ uK cos¢)™t, for |o|>K

PIO=1 o1 g—sin Y w/K)], for |w|<K,

)

where NV is the normalization constant determined by thedoes not possess a fixed poittincreases continuously, and
relation [2"P(¢)d$ =1 together with the periodicity condi- the two oscillators are not phase locked to each other. The
tion P(¢+2m)=P(4). In the absence of the inertigu( average rate of increage) is proportional to the normal-
=0), it is given by the well-known expression@/ ization constantV. Accordingly,{)/Q is in general irratio-

= Jo?—KZ. Thus for|w|<K, the coupling is strong enough nal, and the system is not locked to the external driving,
to drive the system to the fixed point given by  either.

=sin Y(w/K), as in the case of no inertia, and we have the We next consider the case in which each oscillator is
stationary solution, which describes the two oscillators phasériven with different ac driving strengthl {#1,). In this

locked to each other due to the coupling: case (#0), we have a damped pendulum under periodic
torque or resistively and capacitively Josephson junction
. 1 ; _ driven by a combined direct and alternating current. Al-
=wt+ sin Qt—p) cosQt)+ ¢g, . . .
$1=w Q(1+,u292)( H )+ o though Eq.(2) is not analytically tractable due to the nonlin-

ear potential arising from the coupling between oscillators, it
_ ) is known that such a system can be locked to the external
$2=¢p1=sin K driving, giving rise to steplike responses. In the absence of
the inertia term t=0), the locking of the system is charac-
with the mean frequency=(w,+ w,)/2 and an arbitrary terized by(¢)/Q=n with n integer, which is known as the
constantg,. For |w|>K, on the other hand, the coupling (integey Shapiro steps, particularly in the current-voltage re-
loses in the competition with the dc driving, and the systemlation of a single overdamped Josephson juncfi8]. Even
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richer is the characteristic of the system with inertia, which p q-1
allows fractional mode locking, characterized by the frac- w==-0+K[] X 3, (AAsq/s)
tional Shapiro steps: q §=1 74
gq-1
P X2 JAADSIN po+/ ar+ X, Lsasq| (13
o3 (6) 7 =
q

with the summation performed under the constraifg+ /

with relatively prime integerp andg. . _ +339"1s/,/q=0. In particular, wherp= 1, among the inte-
To investigate such mode locking in detail, we introduce

_ ) ) er sets §,/,=3"1s/) satisfying the constraint, the small-
an ansatz and write the phase of the oscillator in the gener%lSt ones give dominant contributions, e.g.,~(2,1) and

form (3,—1,2) for the()/2 step and the)/3 step, respectively.
) Noting that the strengtlA; of the primary component is of
b= ot {P)t+ASiN(Qt+ ay) the linear order irl, we examine the fractional mode locking
q-1 (éﬁ)/Q: p/q with p=1 as a linear response to the external
+> EA sin(EQtJra ) (7)  driving. Higher fractional stepsp(*1), on the other hand,
s >4 can be shown to have the widths of higher orders. ithe

two simple cases,q=2 ((¢)=Q/2) and q=3 ((¢)
We first consider integer locking, where the subharmonics in=()/3), are investigated in the Appendix, yielding the step
Eq. (7) can be dropped. It is tedious but straightforward towidths to the leading order,
obtain the solution locked on th&h step:
Q K2UIF 1o nQ), for q=2
¢~ P+ NQt+A;sin(Qt+ay) (8) dw (91802 K3uIF o u)), for q=3, (14)

with A =1/QV1+4°0% and a;=—tan Y(uQ), where \hore the precise forms of the functiofig,(x) andF ;,5(x)
higher harmonics have been disregardset the AppendiX 516 presented in the Appendix. Equatiti) displays that
Note that Eq(8) does not depend on the coupling stren§th  yhe \yidth 5w shrinks asu is decreased, and eventually van-
explicitly. The condition for integer locking is thus fulfilled has in the limit— 0. This manifests that finite inertia is

by the dc driving lying in the range indeed necessary for fractional locking. In the absence of the

inertia term, the system exhibits only integer locking, which
nQ—K[In(Ay)|< o<nQ+K[I (A1), (9 has been confirmed in many numerical studies.
We now return to the set &M oscillators described by Eq.

and the phaseé, in Eq. (8) is given by (1). Collective behavior of such aN-oscillator system is

conveniently described by the complexder parameter
$o=(—1)"sin"* w- 04 +n (10) N
=(- in"*| ——=———|+nay,
i Kan(An] " v= %2 ei=Ael, (19

=1
whereJ,(x) is thenth Bessel function, Accordingly, in the
high-frequency limit (/Q2<1), the width of thenth step is  where nonvanishing¥’ indicates the appearance of synchro-
given by nization. The order parameter defined in Ebp) allows us

to reduce Eq(1) to asingledecoupled equation

K | : _
5w:2K|‘]n(Al)|% 2n_1n!(0m) ) (11) ,u.;ﬁi-}-(ﬁi‘f'KA sin(¢i— e)za)i'f‘hCOSQt,

which shows that the inertia term tends to shrink the intege\r'\/her.e A and ¢ are to be determmed by IMposing self-
locking region, suggestive of the appearance of the addic_:onsstency. We then seek the stationary solution with con-
tional (fractionf;lb mode locking stantd, which is possible due to the symmetry of the distri-

i : : bution of w; and|; about zero. Redefining; — 6 as ¢; and
| I;or general(fractiona) locking, (¢)=(p/q)Q, Eg. (7) suppressing indices, we obtain
eads to

0 wd+d+KA sin p=w+1 cosOt, (16)
=P+ = Qt+A;sin(Qt+ ay)
q which is essentially the same as Ef) except for the fact
q-1 q s that A in general depends periodically on time. Note here
+ —As‘qsin(—QH asyq), (120  that the order parametér, which is defined in terms of the
s=1S q phase via Eq(15), in turn determines the behavior of the
phase via Eq(16). The self-consistency with the behavior of
which yields the locking condition the phase in Eq(7) thus requires the expansion
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p expansion given by Eq17), making Eq.(21) essentially the
A=Ag+ > ALOYsQt+Bg)+ > Ap,qCOS(—QHBp,q)- same as Eq(3). Accordingly, the discussion below E¢B)
s P4 q 17 is applicable, and Eq21) leads to the stationary probability
distribution given by Eq.(5) with K replaced byKA.
Accordingly, the order parameter is composed of the timeWith the average taken with respect to the corresponding
independent dc component,, which exists regardless of probability distribution, the order parameter in E®O)
the ac driving, and ac components due to the external agecomes
driving.
The behavior of the phase governed by Ep) can be _ _
examined in a manner similar to that presented in the Ap- A:f do g(w)<el¢>w+f do g(w)(€'?),,
pendix. Namely, inserting Eq$7) and(17) into Eq.(16) and |ol>Ka |ol<Ka
comparing the components term by term, we can obtain the T
amplitudes in Eq(7) in terms of the components of the order = (59(0)—
parameter(The order parameter itself can be obtained by
imposing self-consistency and will be discussed in the next +0O(KA)*. (22
section) Among them the width of the step on which oscil-
lators are locked to the external ac driving is determined b)f\l

. : ote that, unlike the case of no inertig€0), the oscilla-
the equation for the dc component. For example, in the casg : . .
. . . : tors with| w|>KA as well as those withw|<KA contribute
of integer locking, the resulting equation for the dc compo- . S
nent reads to the order parameter. Namely, in the system with inertia,

unlocked oscillators as well as those locked to the external
0=nQ+(—1)"KAJ,(A))sin(¢o—na;), (18  driving contribute to the collective synchronization. Itis also
of interest that the quadratic terfof order (KA)?], which
which is simply Eq.(A5) with K replaced byKA,. Conse- results from the unlocked oscillators, induces hysteresis in
quently, those oscillators with dc driving in the range the bifurcation diagram, since (4/3y(0)>0 [13]. Indeed
the appearance of the hysteresis has been pointed out in the
NQ =KAo Jy(A)[<sw=<nQ+KAoJ(A)], (19  system with large inertifl4].

We now consider the effects of periodic driving, which
leads to locking of the oscillators in the appropriate range.
Both integer locking and fractional locking have been stud-
ied in detail in Sec. Il. In particular, the ranges of the con-
stant driving for locking and the phases of such locked os-
cillators allow us to compute the contributions of locked
oscillators to the order parameter. The contribution of the

locked oscillators to the order parameter is computed as fol-
IIl. SELF-CONSISTENCY EQUATION lows:

FOR THE ORDER PARAMETER

kAt 2 ug(0)(KA)Z+ - g"(0) (KA)?
2 3Hd 169

which will be denoted by the notatione S, are locked to
the external driving, and Eq$10) and (11) are still appli-
cable simply withK replaced byKA,. Likewise, for frac-
tional locking, the locking condition and the step width are
given by Egs(13) and(14) with the appropriate replacement
of K by KA.

In this section we derive the self-consistency equation for * 0 »
the order parameter, which determines the collective behav- wd' f(h wd“’ g(@)(e'%),,
ior of the system. We suppose that the periodic driving

strengthl is distributed according té(1), independently of (" i

the constant driving strengih. Recalling thatg in Eq. (16) =] _di f(l);] s dog(w)(e'?), (23
in fact representg— 6, we have the self-consistency equa- ’ Pl

tion

where, for example, the integer locking rarfgjg, -, is given

1 . o % , by Eqg.(19) and the fractional locking rang&,, andS,; by

A= N; e'di= f_xC“ f(')f_mdw g(@)(€) 1, Eqgs.(A10) and(A16) with K replaced byK A, respectively.
(20) The phases of the oscillators in such locking ranges are given

by Egs.(8), (A6), and(A13), with the coefficientsAs , pre-

where (- --),,, denotes the average in the stationary statesented in Eqs(A8) and (A14).
with given w and|. It is easy to compute the contribution from thih integer
To investigate how the inertia term affects the collectivestep:

synchronization, we first consider the system without peri-
odic driving (I =0), for which Eq.(16) reads _
f dl f(I)f Sndcu g(w)(e'?)

wd+ d+KA sin p=w. (21)

In this case there does not exist mode locking, and the sta- =aVKAg+bM(KAQ)?—cM(KAg)*+O(KAg)*
tionary state of the system is characterized by the order pa- (24)
rameter, which is time independent. Namely, the order pa-

rameter A possesses only the dc componekg in the  with the coefficients
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©

aW= gg(O)<JO(A1)co§LAlsin(Qt+ ay) )+ 7721 g(2nQ)cog2nQt+2na4)(In(Ar)cod Assin(Qt+ aq)]),
—anl gl(2n—1)Q]sin(2n—1)(Qt+ a1)(Izn-1(A1)SINASIN(Qt+ 1) ])
E—%Z —1)"g’ (NQ)sin(NQt+na;)(I3(A))cog Asin(Qt+aq) 1), , (25

M= %g"(O)(JS(Al)coiAlsin(Qt+ a)])— gﬂ; g"(2n0)cog 2n 0t + 2na ) (33 (Ay)cog Asin( Ot + ap) 1),

tg 3 9'l(2n-1)0]si (20 1)(Qt+ ) (I, (A)SiTASIN QL+ ay)]),

where(- - - ), denotes the average over the distribution of the Ag=aoKAy+ bo(KAo)z—Co(KAo)s-
ac driving strength, i.e{O),=/Z_.dl f(1)O. In order to ob-
tain the complete self-consistency equation for the order pa- A .=aKAy+by(KAg)2coq ys— &)
rameter, we should also consider the contributions from the
fractional steps. The fractional locking on tipéq step in
general leads to the contribution of the order &fA{)Y,
with frequency p/q)Q) and amplitudes proportional to
g(pQ/q). To the order of KAy)3, we thus need to consider (28)
only the casex=2 and 3. To the linear order if it is _ 2
straightforward to observe that the symmetryf¢f) about Ap.g=ap,gKAoF by o(KAG)CO p,q= Jp,q)
zero leads to a null contribution from the fractional locking
on the 1/2 and 1/3 steps. Contributions to the higher orders in
I, where the step 2/3 should also be considered, can, in prin-
ciple, be computed analytically via the procedure described X (KAg)®,
in the Appendix.

With the contributions from the locked oscillators as well with the phase
as from the unlocked ond Eg. (22)] taken into account,
the self-consistency equation for the order parameter in gen-
eral takes the form Bs=tan”

b2
—| CsCOH ys— €5) — ismz( Ys— 55)}(KA0)3 )

b2
~|€p.qC0L ¥p,q~ €p,g) — S'nz(yp q= p,q)}

1| @ssin ys+bgKAgsin 85— cy(KAg)?sin e

asC0S Y5+ b KA C0S 85— (KA ()2cos e
A=aKAy+b(KAg)2—c(KAy)S+0O(KAy*, (26
and g, 4 similarly given.
where the time-dependent coefficients can be expanded: We first consider the dc compone#t, in Eg. (28), the
general behavior of which has been analyzed in Rie]: In
addition to the trivial solutiom\ =0, it allows the nontrivial

p
a=ao* z 3OS+ yo) + % ap,qcos<aﬂt+ YP'Q) ' solutions described by

boK = (b2 + 4coag) K2 —4coK
b=bo+ >, becogsQt+ 8+ >, bpqco\c(BQH(qu), Ag=A.=— == = (29
S p.g q ' 2¢coK
27

if K=Ko=4c,/(b2+4coay). For simplicity, we assume
that all coefficientsay, by, and cy have positive values
(ag,bg,co>0). For K<K,, only the null solution exists,
whereas the stable nontrivial solutidn, together with the
with the dc and ac amplitudes and phases depending on th#stable solutiomA _ appears via a tangent bifurcation at
details of the external driving. K=Kgy. AsKis increased further, a transcritical bifurcation
Equation(26) describes the collective behavior of the sys-arises atK =K —ao , via which the null solution loses its
tem for given values of the parameters. The expansion givestability. Thus only the nontrivial solutiod . is stable for
by Eqg. (17) allows us to reduce Eq26) into the equations K=>K,.. For Ko<K<K,, on the other hand, both the solu-
for the components of the order paramdr the order of tion A, and the null solution are possible, indicating bista-
(KAQ®: bility. This implies the following behavior of the system: As

p
c:cOJrES cCogsQt + oss)+;q cp,qcos(aQH €paql -
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K is increased from zero, the system, starting in the incoher- T m
ent state, exhibits a first-order transitionkat= K, into the a2n=§g(0)~]o(Ao) Jon(Ag) — 5 %o
coherent state described by the nontrivial solution, with the

jump Agc)zbolcch in the dc componen,. Conversely,

whenK is decreased from abov&, , the system is still in the ban=319(0)dno,
coherent state untK reachesK,, at which the transition

from the coherent state into the incoherent one occurs, with -

the jumpA{P=by/2coK,. (See Ref[13] for details) In this Con=— 1—69"(0)38(%) J2n(Ao),
manner the system with nonvanishing inertia exhibits hyster-
esis as the coupling strength is varied.

(30

asn-1=byn-1=Cpn-1=0

with Ag=1,/Q\1+x?0? and the phasesy,,= ey,
IV. PERIODIC SYNCHRONIZATION =2na;. Note that due to the symmetry 6¢1), the above
amplitudes and, accordingly, the order parameter become
In the system without periodic driving € 0), the station-  €ven functions of .
ary state of the system is characterized by the time- Equation(26) together with Eq(30) describes the collec-
independent order parameter. In the periodically driven systive behavior of the system for given values of the param-
tem, on the other hand, the coefficierts b, andc in Eq. eters. In the absence of_ the inertia and ac driving
(27) depend on time, and the system is expected to displf:g‘zlozo)’ we haveA=A4, in Eq. (26) with coeff|5|ents
periodic synchronization, characterized by periodic variatio =ao=(m/2)g(0), b=0, and c=co=—(7/16)g"(0),

of the order parameter. In this section we study such periodi?fvhiCh reduces Eq(26) into the self-consistency equation

synchronization phenomena, with particular attention to the btained in Ref[_8]._As _pomf[ed out already, without ac d_”V'
inertia effects. Since the analytical computation of the con-'ng’ the no_nvanlshmg ||jer_t|a here .keeps. the \(alub posi-

N ' . : o tive, inducing hysteresis in the bifurcation diagram of the
tributions from the fractional steps, which appear in higher

d inl : ite | h d f d stationary order parametar= A, [19]. Together with appro-
orders inl, requires quite lengthy and complicate prc’C(,a'priate ac driving, the inertia may bring on hysteresis also in

dures, we mostly assume that the contributions from the ing,o pehavior of the ac components of the order parameter.
teger steps are dom?nant over those.fr.om the fractiongl St€PFhe periodic behavior of the order parameter is described by
this is the case folr high-frequency dnvmg or for small inertiaji 5¢ componentd, which are related with the dc compo-
and weak ac driving, and the system still displays characternenm0 via Eqg.(28). With the amplitudes given by E430),
istic effects of inertia on periodic synchronization. The ex-ijt gives the total order parametdr, displaying the periodic-
plicit forms of the coefficients in Eq27) are determined for ity 7/Q) half the external one. Accordingly, the behavior of
given distributionsy(w) andf(l). We here suppose that the the dc component, discussed in Sec. IIl determines that of
dc driving strengths are distributed in the interval the ac component as well. A is increased from zero, the
[~ e, o], .., g(w)#0 only for |w|<w., and take the system thus exhibits a first-order transitionkat K from
simple *1-type distribution,f(1)=3[8(1—1g)+ (1 +1¢)]. the incoherent state to the coherent one, where both dc and
Characteristic features such as periodic synchronization dac components of the order parameter acquire nonzero val-
not change qualitatively even if a broad distribution such asies. In particular, the ac componekj,, (n=1) as well as
a Gaussian is used. the dc component display jump discontinuitieskat K.,
We first consider the simple case of high-frequency driv-given by A% =a,,(bo/co) — Can(bo/Co)3. Similarly, when
ing such that) is larger than 3., where only thep/q=0 K is decreased from abow¢;, the first-order transition oc-
step contributes to the order parameter. The coefficients idurs at K=K,, with the jump in the ac component
Eq. (27) in the self-consistency equation are then obtained\ (=a, (by/2ce) — Con(bo/2¢o)3. Thus for sufficiently
from Egs.(22) and(25): large K the system is in the coherent state, exhibiting peri-
odic synchronization.
Figure 1 shows the behavior of the total order parameter
A at given timet, given by Egs(26) and(30), as the cou-
pling strengthK is varied. Both(a) the case of zero inertia
(u=0) and(b) that of nonvanishing onei(=0.05) are dis-
played, at timet=5. The driving strength and frequency
4 have been chosen to bg=2 and() =5 while the dc driving
b= §,ug(0), strengths to follow a semicircle distribution with unit radius.
In the absence of inertigu(=0), as shown in(a), coherent
behavior emerges via a continuous transition Kat K
~1.0842. On the other hanth) displays the first-order tran-
__ 3 ; sitions in the system with nonvanishing inertia € 0.05),
c=~169"(01Ja(Ao)cog Agsin({2t+ )], appearing aK,~1.1038 and aK.~1.1089, and associated
hysteresis. Note tha€, is increased from the value without
inertia, indicating that the inertia tends to suppress coher-
which give the amplitudes ence. The corresponding time evolution of the order param-

7 . "
a= EQ(O)JO(AO)COE{AOSW‘(QH' a1)]— o
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0.3493
A A
K, 0.3446
0 ¢ (a) 0 t 2n
(a) K 0.2325
A
A |
|
f |
| | 0.2295
. K,V0 K,' (b) 0 n 2n
(b) K FIG. 3. Periodic synchronization in the system with=1.68,

1=0.1, andQ=1.0, for(a) «=0 and(b) ©=0.05. It is again ob-
FIG. 1. Behavior of the order parameter with the coupling served that the inertia tends to suppress the synchronization.
strength(a) in the absence of inertig(=0) and(b) in the presence

of inertia (u#0). In (a) a pitchfork bifurcation is shown to occur at - (2) - g - (2)
K=K, while (b) displays a tangent bifurcation Kt and a trans- a,=——¢g(0)+ —g(2Q)+ —g(Q),

" . . . . : . 2 2 2
critical bifurcation atK.. The dotted lines indicate discontinuous Q 80 40

jumps between the coherent and incoherent states.

eter forK=1.11 is shown in Fig. 2, where the periodicity bo= 3 19(0),
7/Q = /5 can be observed. Comparison(af and (b) in-
deed reveals that the inertia tends to reduce the value of the 12
order parameter, thus suppressing coherence in the system. b,= _Og’(Q),
We next consider the case of small inertia<€1) and 302
weak ac driving [(<<1). In this case the fractional steps
give contributions of the order qilé, and may be neglected - W|§
in the self-consistency equation to the ordet Hf leading to o=~ 79" (0)+ 16&)29”(0)’
Eqg. (27) in the form

2

Co=— "(0).
2 64&)29

a=ag+a,c08 20t +2a;)+0(uld),

b=bgy+b;SiN(Qt+a;)+0(ul3),
The total order parameteX thus reads, to the order f,

C=Co+C,c08 20t +2a4) + O(ul}), A=Ayt by(KAg) 2SN Ot —tar 1)

with the amplitudes +[ay(KAg) —C(KAg)3]cog20t—2 tan 1),
2 2 (32
T u mlg wlg Q
0= 5900~ 5~ 75790~ 7 579(D), displaying the fundamental periodicityi2Q together with
its harmonicsw/Q). Similarly to the previous case of high-

0.4220 frequency driving, the total order parametealso exhibits a
first-order transition between the incoherent state and the co-
A herent one; at the transition both dc and ac components of

the order parameter display jump discontinuities.
As the coupling strengtK is varied, the order parameter

(@ 0.3876,; ; 2 /5 A given by Eq.(31) displays behaviors qualitatively similar
0.3890 to those for high-frequency driving, shown in Fig. 1. As an
example, we choose a Gaussian distribution with unit vari-
A ance for the dc driving andly=0.1 andQ =1 for the ac

driving. In the system with =0 this leads to a continuous
transition atk.~1.6087; foru=0.05 first-order transitions
) 0.3589 ; om/5 atKy~1.6698 and aK.~1.6762. Figure 3 shows the corre-
sponding time evolution foK=1.68, which displays the
FIG. 2. Periodic synchronization in the system with=1.11, fundamental periodicity 2/{)=2m as well as the harmon-
=2.0, andQ =5.0, for(a) ©=0 and(b) x=0.05. Comparison of ics 7/{). Again the suppressing effects of the inertia on syn-
the two reveals that the inertia tends to suppress synchronizationchronization is manifested.
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It is also of interest to note the possibility that the ampli- )
tudes of the ac components can be of the same order as that n> SPOPASIN(SQL+ ay)
of the dc component for appropriate ranges of the param- °
eters. For example, in EQq.(30) the ratio a,/ag
= J5(A)/{Jo(Ag) ~ [ m7(0)Jo(A)] '} may become of ~ 2 sOACoIsOtt ag) +1 cost
the order unity forl;=1. Then the order parametdr may
sometimes vanish during its periodic time evolution, display-
ing synchronization-desynchronization cycles in time. Such
cycles have been observed in the numerical simulations of
the system without inertig20].

=nQ-ow+K]] Z 3, (AJsin®, (1),
S s

where J|(x) is the Ith Bessel function andbP, (t)= ¢
+3/as+(n+25/)0t. The integers /¢ satisfying
V. SUMMARY 38/ s= —n contribute to the dc component (h/s:

We have studied analytically the synchronization phe-
nomena in a set of globally coupled oscillators under exter- ,—nQ = KH Z’ J, (Agsin
nal periodic driving. To understand how the inertia term af- s °
fects the collective synchronization, we have investigated the

change of collective synchronization due to the small inertiayhere the prime in the summation represents the constraint
term in the linear response to the periodic driving. In thes s/ .= —n. This gives an estimation of the dc driving
absence of inertia, only oscillators locked to the externaktrengthw corresponding to the integer locking. Further, the
driving contribute to the collective synchronization. In con- amplitudeA and phaser of the component with frequency
trast, in the system with inertia, unlocked oscillators as wellsQ) can be determined from the equation

as those locked to the external driving contribute to the col-

lective synchronization. The resulting self-consistency equa ZQZAssm(sQH rs) — SQALOL SO + ag) + 5 4] COSSO

tion for the order parameter reveals variation of the magnl

tude of the order parameter according to the external periodic

driving. The dependence of the characteristic behavior of the = KH > Jsr(Ag)sin
order parameter on the inertia as well as on the external g

driving has been examined: The inertia tends to suppress N N
coherence and affects the details of the behavior, such asthe kK [] > J/(AS)Sin( bo—SQt+ >, /s ag
nature of transitions and the period of the system. In particu- =1 s s=1

lar, it has been found that the inertia gives rise to hysteresis
in the bifurcation diagram and induces discontinuous transi-
tions between the coherent and incoherent states. Here on
analytical results have been presented, and it would be
interest to confirm these results via large-scale numeric
simulations.

bo+ 25 /sas) ) (A2)

N
bo+sQt+ > /T as>
s=1

. (A3)

S

ith integers /¢ and / satisfying 2,5/ =s—n and
8/ =—s—n, respectively. In Eq(A3) the ac driving
6M\nth frequencyQ gives the contribution, independent I§f
to the amplitudeA;. On the other hand, the leading order
contribution toAg with s>1 is obviously given by. When
K is sufficiently small compared with the driving frequency
and amplitude, Eq(A3) with s=1 takes the approximate
form
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which yieldsA; and «, to the zeroth order if:

APPENDIX
1. Integer locking: {$)=nQ A I
Inserting the ansatz o1+ 20?7
H(O=otnOL+ X Asin(sOt+ag) (A1) 1= —tan Y uQ).

This gives the(locked phase of the oscillator on theth
into Eq. (2), we obtain step:
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I K [ Q)
~ o+ NQt+ ———=si Qt—tan }(uQ)], A SiN a1 )= ——=—=——| ——Sin ¢+ cos
¢ ¢0 Q\/l'f’,u,—zmgr[ (IL’L )] l,ZQ' Cl'1,2 1+,(L292/4_ 2 ¢0 ¢O
(A4) |
which is just Eq.(8). Neglecting the higher-order contribu- - EQ(MQ;%) (A8)

tions from A, with s>1 in Eq.(A2), we further have

with  P(X;¢o)=(1+x%) " 3x cos¢y+(2—x?)sin ¢y] and
Q(X; o) = (1+x3) " 3x sin ¢+ (x*—2)cos¢yp]. Equation
which leads to the range of the dc driving strength given by(A7) combined with Eq(A8) leads to the following expres-

w=nQ+(—1)”KJn(A1)Sin(¢0—na1), (A5)

Eq. (9) and the constanp, in Eq. (10). sion:
; 2 Fractonalfocking W= W™ 29 K F o Q)sin(2¢g— ay), (A9)
(¢)=QJ/2. The simple trial solution
Q where
d(O)= ot _HAlS'l’\(QH ap)+2A; Sin St+ar,
(A0 ot K
12=75 Q(1+M292/4) ,

leads the equation of motion in E¢L6) to take the form

2

2\ -1
Fl/z(X)E(1+X2)l/2(1+ —

wQ2ASin(Ot+ap)— A Q cog Qt+a;)+1 cosQt

ek Q 4)
2 A128|n t+ a’lz Al,ZK)’ CO%Et"‘ a’lvz
and we have usefl; =1/Q 1+ Q2. Equation(A9) yields
Q the range of the dc driving strength corresponding to(ii2
E/ (2A12)3(A)SIn D (1) + 5@ locking:
where®, ,(t)= ¢o+ N+ a1+ (1/2+n/2+/)Qt. Thus _
the terms with/'+ 1/2= —n/2 contribute to the dc compo- W12~ ZQ K Fiun)sws “’1/2+ 20 K FuAnd),
nent, and give the equation for the dc component (A10)
%_ 0—KJI1(2A1 ) Jo(A)SIN do— a1 5) and the constant phasg, in Eq. (A9) is given by
~K3,(2A1)31(A)SiN o+ a o~ ar) + O(K2,12) o= 5sin 1y~ 2 (A11)
=0. (A7)
On the other hand, the amplitude and phase of the comp(\)NIth
nent with frequency/2 is determined by the equation
20
02 Q y=——————(0o—wyp).
2 A125|n t+a12)+A129 COS{Et"'alz IU’IKZFI/Z(/-LQ)
(Q Equation(A10) leads to the step width far)=Q/2:
+KJo(2A15)Jo(Ag)sin §t+ b0

Sw=Q"K2ulF 19 nQ), (A12)

Q
+KJp(2A12)J1(Ag)sin Stray- ¢0)+O(K2I2)

which is presented in Ed14).
o, (¢>=Q/3. In a similar manner, we take the trial solution
displaying(¢)=Q/3,
which, upon expanding the Bessel functidg(z) for z<1,

yields

Q
d(t)= o+ t+AlSIn(Qt+a’1)+3Al Sin t+ Qg3

K

729 .
A COSw{ )= ——— —C0S ¢y— SIN
1.4} L T 207, 2 bo bo

3 2Q)
+ = A2 3SII’1 t+ Gf23

' (A13)

|
+ EP(MQ’%) ’ and obtain the coefficients
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w202\ 7w i o 21Q
A ) cosa; 3=| 1+ 9 K Tcos%—sm do| +K TB(MQ)—C(MQ) ,
. w22\ (uQ o[ 1O
A ) sinags=| 1+ 9 K Tsm ¢ot+CoSg| +K TC(,U,Q)-FB(,LLQ) ,
K 44202\ " Y5u0 2u2Q0?
A, cosay == (1+u2Q?) Y 1+ ’ ” COS ¢ho— | sin¢g
' = 20) 3 3
4u20%\ " 2u0
+K2(1+ “9 ) ’; L(,uQ)—M(,uQ)),
_ K oo . AMPQA T B5uQ 202
A, ) sin a2’3=ﬁl(1+,u, Q%) 1+ 9 —Tsm dot+| 11— 3 COS ¢
4p202%\ " 2,0
+K? 1+ 5 3 M(uQ)+L(uQ) ], (A14)
|
where Q . 3K2
BX) (x 11, 19,10 0 13 20(1+ 4202/9)
m— 3 2—7X COS 2pg +§X +2—7X sin 2¢g, - -
X
= 2y-1 - -
C(x) x+11 3) in 26 (1+ 19 , Fius(X)=(1+x) "4 1+ 3 (1+ 3
——=| — =+ ==x°|sin - —X
D(X) 3 27 0 9 L 31X2 85X4 61)(6 4X8 1/2
10, AT T o7 e et
+2—7x COS 2¢g,
. 5x3  2x%\(x? x4\ 1!
with n(x)Etan X+?+T §—§ .
3] X2 -1 4X2 -1 . . . .. . _ X
D(x)= (1432 Y 142 14 2% This gives the locking condition fof¢)=Q/3:
802 9 9
K3 oK3
and w13~ 1602M|F1/3(MQ)$60$¢01/3+ GQZMFl/s(MQ)-
3 x?\ "1/ x (A16)
L)=5q| 1T g/ (3608 2o—sin Zd’o) : Likewise the constant phasg, in Eq. (A14) is given by
. 3 x21(x s 1., 1602 ( ) 7
M(X)= | 1+ — =Sin 2¢y+Cc0os 2pg | . 0= 3SIN | —————————— (0w~ wy3) |~ 3
20 9 3 0 0 3 QulK3F 13 Q) 3
o ] o (A17)
The dc driving strength corresponding to té3 locking is _
also obtained: We thus obtain the width of the stég)= /3
oK? _ 9 .
W=y~ GQ2M'F1/3(,MQ)S”1(3¢>0+ 7) (AlY) dw=——K ulF 13(uQd), (A18)

with

80?2
which is given in Eq(14).
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